Abstract

AbstractThis study aims to develop a numerical scheme in collocated Cartesian grids to solve the level set equation together with the incompressible two-phase flow equations. A seventh-order accurate upwinding combined compact difference (UCCD7) scheme has been developed for the approximation of the first-order spatial derivative terms shown in the level set equation. Developed scheme has a higher accuracy with a three-point grid stencil to minimize phase error. To preserve the mass of each phase all the time, the temporal derivative term in the level set equation is approximated by the sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and milkcrown problems in two and three dimensions agree well with the available numerical or experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.