Abstract
Flows and heat transfer in channels containing both fluid and porous regions play an important role in various engineering applications. A better understanding of fundamental mechanisms in the fluid flows in porous regions are required in order to design and optimise gas bearings, air filters, and thermal insulation in the specific applications. Darcy-Brinkman-Forchheimer model is used to describe the flow inside the porous domain. The finite volume method is applied to solve these equations in a porous and open domain. The capabilities of the mathematical model and computational algorithm are demonstrated using test cases from various areas of practical applications. The effect of various physical quantities on velocity and pressure distributions is studied. The results of the numerical simulation of flows in porous domains are presented. The results obtained are in a good agreement with the experimental and numerical data available in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Industrial and Systems Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.