Abstract
This paper reports a study of the backscattered ultrasonic signal from a solid layer containing spherical cavities, to determine the conditions in which an effective medium model is a valid description of the response. The work is motivated by the need to model the response of porous composite materials for ultrasonic non-destructive evaluation (NDE) techniques. The numerical simulation predicts the response of a layer containing cavities at a single set of random locations, and compares it to the predicted response from a homogeneous layer with ensemble-averaged material properties (effective medium model). The study investigates the conditions in which the coherent (ensemble-averaged) response is obtained even from a single configuration of scatterers. Simulations are carried out for a range of cavity sizes and volume fractions. The deviation of the response from effective medium behavior is modeled, along with the trends as a function of cavity radius, volume fraction, and frequency, in order to establish an acceptability criterion for application of an effective medium model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.