Abstract
The double honeycomb sandwich panel, which was formed by inserting an intermediate facesheet into single honeycomb core, showed better capability than single honeycomb panel in shielding hyper-velocity impact from space debris. Shielding structures with double honeycomb cores are thoroughly investigated with material point method and point-based internal-structure model. The front honeycomb core and the rear honeycomb core are staggered to obtain better shielding effect. It is found that staggered double honeycomb cores can fragment the debris and lessen impact threats much more than original double honeycomb cores. The sizes of the holes on the rear facesheet are greatly reduced, and the panels are not perforated for some impact velocities. Staggered double honeycomb panels can be adopted as novel effective shielding structures for hyper-velocity impacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mechanics and Materials in Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.