Abstract

Shock-induced flow separation is important in hypersonic intake unstart and for unsteady aero-thermal loads. This work presents a computational study of shock-boundary layer interaction (SBLI) at hypersonic Mach numbers. The objective is to accurately predict the separation bubble size for oblique shock impingement on a turbulent boundary layer and for two-dimensional axisymmetric cone-flare SBLI cases. We use the Reynolds-averaged Navier Stokes method with an advanced shock-strength-dependent turbulence model. A recently developed transport equation-based shock sensor is employed to identify the location and strength of shock waves. The computational results are found to match experimental measurements of surface pressure and skin-friction coefficient for a series of test cases, highlighting the effects of Mach number, shock generator angle, and wall cooling on the size of the separation bubble. Results are also found to conform to the scaling of SBLI separation size found in the literature. This is one of the few such corroborations for hypersonic axisymmetric SBLI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.