Abstract

When hypersonic vehicle travels in the atmosphere with a high speed, the surrounding gas experiences complicated physical and chemical processes producing high-temperature gas effects. High-temperature gas effects are a key issue related to hypersonic aerodynamic design and optimization. The finite volume method is applied to solve unsteady three-dimensional compressible Navier–Stokes equations on unstructured meshes. High-temperature gas effects altering the aerodynamics of vehicle are taken into account. Possibilities of the use of graphics processor units (GPUs) for the simulation of hypersonic flows are demonstrated. Solutions of some benchmark test cases on GPUs are reported, and a comparison between computational results of chemically equilibrium reacting and perfect air flowfields is performed. Speedup of solution of the problems of interest on GPUs with respect to their solution on central processor units (CPUs) is compared. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.