Abstract

A spatially-distributed hydrologic model (WetSpa) is used to simulate hydrologic processes in the Simiyu River, a tributary of Lake Victoria, Tanzania. The model combines digital maps of topography, land-use and soil texture with observed daily meteorological time series to predict discharge hydrographs and spatial distribution of hydrologic parameters in the basin. The model was calibrated using 3 years of daily observed discharge measured at the mouth of the river at Lake Victoria. The estimated average travel time of the runoff to the outlet of the basin is about 2.4 days and a maximum of 8 days for the most remote areas. The model results show that the surface runoff and interflow provide, respectively, 38.6% and 61.4% of the total discharge, while the contribution of groundwater drainage is about nil. The absence of groundwater drainage is likely due to the high evaporative demand of the atmosphere, which accounts for about 90% of the total precipitation being lost by evapotranspiration. The annual water balance estimated with the model reveals that the total outflow to Lake Victoria is about 475 x 106 m3 per year, which occurs mainly in the wet seasons, i.e. from March to May and from November to January. The discharge volume produced by agricultural land amounts to about 43 x 106 m3 and may carry agrochemicals to Lake Victoria.

Highlights

  • Lake Victoria is the largest freshwater lake in Africa, and one of the major sub-basins within the Nile basin, sharing its resources with Tanzania, Kenya and Uganda (Ningu, 2000; Phoon et al, 2004)

  • The hydrological cycle has an especially prominent role in the functioning of these processes. This means that the task of quantifying, or modelling, pollutant loads must include consideration of hydrology, water and soil chemistry, micro-and macro-biology, and many other disciplines (Jolankai et al, 1999)

  • Evaporation from the soil and transpiration from vegetation is regulated by the evaporative demand of the atmosphere, soil and plant characteristics, and soil wetness

Read more

Summary

Introduction

Lake Victoria is the largest freshwater lake in Africa, and one of the major sub-basins within the Nile basin, sharing its resources with Tanzania, Kenya and Uganda (Ningu, 2000; Phoon et al, 2004). Pollution from agriculture consists mainly of fertilisers and pesticides (Scheren et al, 2000). To address these problems, the riparian countries established the Lake Victoria Environmental Management Project (LVEMP), a World Bank funded project, which became operational in 1997, aiming at rehabilitation of the degraded lake ecosystem. The hydrological cycle has an especially prominent role in the functioning of these processes. This means that the task of quantifying, or modelling, pollutant loads must include consideration of hydrology, water and soil chemistry, micro-and macro-biology, and many other disciplines (Jolankai et al, 1999)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call