Abstract

This paper develops schematics and evaluates the performance of hybrid mesh turbomachinery at the patenting stage of individual technical solutions. This type of turbomachine uses reduced-sized blades and also forms flow channels with a mesh structure between the blades. The research methods are based on simulations using computational fluid dynamics (CFD) and additive technologies. An intermediate conclusion is that a new scientific direction for investigating and creating hybrid mesh turbomachinery equipped with mesh jet control systems was formed to develop Euler's ideas. This paper describes new possibilities for the simultaneous implementation of two workflows in a single impeller: 1) Turbine workflow, and 2) Compressor workflow. Calculation methods showed possible improvements in the performance of the new turbomachines. This paper considers options for mesh turbomachine operation in the two-stage gas generator mode with partial involvement of atmospheric air in the workflow. Preliminary calculations based on examples show that it is possible to expect a two- to four-times increase in thrust when using hybrid mesh turbomachines. Ongoing studies mainly focus on developing multi-mode turbomachinery that works in complicated conditions, such as offshore oil and gas fields, but some research results are applicable in other industries, for example, in developing hybrid propulsion systems or propulsors. Doi: 10.28991/CEJ-2022-08-12-011 Full Text: PDF

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.