Abstract
Statistical summaries of wind speed are sufficient to compute many characteristics of turbine-generated power, such as the mean, variance and reliability of various power levels. However, a wind speed time series is necessary to produce a sequence of power values as used for investigating load matching and storage requirements. Since a long historical record of wind speed may not be available at a wind turbine candidate site, it is desirable to be able to generate a simulated numerical sequence of hourly wind speed values. Two such approximate procedures are developed in this paper. One procedure generates sequential wind speed values at a site based on the Weibull parameters of hourly wind speed and the lag-one autocorrelation of hourly wind speed values. Comparison with historical data at a site is made. The second procedure generates sequential hourly wind power values for a regional array of wind turbines. It utilizes the typical site wind characteristics, the spatial and lag-one cross correlation and autocorrelation of hourly wind speed values and an equivalent linearized relationship between array average wind speed and array power. Comparison with results for six different wind turbines in three different regional arrays indicates good agreement for wind power histograms, autocorrelation function and mean persistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.