Abstract

A rigorous methodology for the simulation of homogeneous and partially isotropic multidimensional random fields is introduced. The property of partial isotropy of the random field is explicitly incorporated in the derivation of the algorithm. This consideration reduces significantly the computational effort associated with the generation of sample functions, as compared with the case when only the homogeneity in the field is taken into account. The approach is based on the spectral representation method, utilizes the fast Fourier transform, and generates simulations with random variability in both their amplitudes and phases, or in their phases only. Spatially variable seismic ground motions experiencing loss of coherence are generated as an example application of the developed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call