Abstract

The characteristics, the formations and loss mechanisms of different particles of hollow cathode discharge in oxygen at 266 Pa are investigated by using the fluid model. The model contains 11 kinds of particles and 48 reactions. Under this simulation condition, the negative glow regions corresponding to the surrounding cathodes overlap. The results show that there is a strong hollow cathode effect. The density distributions of different charged and active particles are calculated. The charged particle density is located mainly in the central region of the discharge cell. Electrons and O<sup>–</sup> are the main ingredients of negative charges in the discharge system, and their density peaks are 5.0 × 10<sup>11</sup> cm<sup>–3</sup> and 1.6 × 10<sup>11</sup> cm<sup>–3</sup>, respectively and <inline-formula><tex-math id="Z-20220109205735">\begin{document}${\rm{O}}_2^+ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20211150_Z-20220109205735.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20211150_Z-20220109205735.png"/></alternatives></inline-formula> is a main composition of positive charge in the discharge system with a peak density of 6.5 × 10<sup>11</sup> cm<sup>–3</sup>. Abundant active oxygen particles exist in the discharge system, and their density is much higher than those of other charged particles. According to the densities of active particles, their magnitudes are ranked in the small-to-large order as O, O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>), O(<sup>1</sup>D) and O<sub>3</sub>. Furthermore, the generation and consumption mechanism of electrons, O<sup>–</sup> and <inline-formula><tex-math id="Z-20220109205753">\begin{document}${\rm{O}}_2^+ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20211150_Z-20220109205753.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20211150_Z-20220109205753.png"/></alternatives></inline-formula> are calculated in detail, and the generation and consumption paths of different active oxygen particles are also given. The results show that there is a complex coupling process among these particles. Each reaction generates a certain number of particles and consumes other particles at the same time, resulting in a dynamic balance among these particles.

Highlights

  • The results show that there is a strong hollow cathode effect

  • The results show that there is a complex coupling process among these particles

  • 3) (Institute of Electrostatic Technology, Hebei University, Baoding 071002, China) ( Received 18 June 2021; revised manuscript received 12 September 2021 )

Read more

Summary

G8 G9 G40

合. 由图 9(b) 可知, 正负离子复合反应 G10 是 O– 离子消耗的最主要途径, 占 O–离子损失的 86.712%. 其他 产生电子的反应包括 O–离子参与的两体碰撞反应 G11、G12、G32 和 G3, 它们对电子产生的贡献相 比于反应 G2 是可忽略的. S 由图 7(b) 可知, 电子附着反应 G7, G9 和 G40 s 是电子消耗的主要反应机制, 分别占电子损失的 e 42.418%, 25.808%, 31.748%. 降低, 之后继续增大, 在放电中心处达到最大值, 值, 最大反应速率值为 1.0 × 1016 cm–3·s–1. 其他消 耗 O–离子的反应包括电子脱离反应 G11 和复合反 应 G38, 它们与反应 G10 具有相同的分布特性, 对 O–离子损失也起到一定的作用, 分别占 O–离子 损失的 8.548% 和 3.809%. 降低, 之后继续增大, 在放电中心处达到最大值, 值, 最大反应速率值为 1.0 × 1016 cm–3·s–1. 其他消 耗 O–离子的反应包括电子脱离反应 G11 和复合反 应 G38, 它们与反应 G10 具有相同的分布特性, 对 O–离子损失也起到一定的作用, 分别占 O–离子 损失的 8.548% 和 3.809%. 其他反应对 O–离子损 失起到的贡献极小, 比例之和不超过 1%. 这与 Laca 等 [42] 的研究结果相符

O+2 离子生成与损耗的主要反应机制
G10 G11 G12 G16 G32 G33 G38 G42
G28 G29 G39
G10 G13 G18 G27
G34 G45 G46 G47 G48
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call