Abstract

Episodes of heavy rainfall, although relatively rare, significantly contribute to the hydrological cycle due to the large quantum of rainfall in a short span of time. Accurate simulation of such heavy or extreme rainfall events therefore is an important benchmark for a model. Here, we consider the simulation of three heavy rainfall events (Mumbai, Bangalore and Chennai) that occurred over the Indian monsoon region in different geographical locations and seasons during 2005, using a mesoscale meteorological model, namely MM5V3. Simulations have been carried out at high resolution (2 km) to resolve orographic features and land–ocean gradients over the event locations with a 3-nest, 2-way configuration. The primary objective of this study is to carry out a multi-event, multi-location evaluation of the model configuration for simulating a class of heavy rainfall events and to compare some important meteorological features of the events. Our results have shown that a very high relative humidity, low-level convergence, convective instability in terms of equivalent potential temperature, high vertical velocity, smaller mixing ratio at low level and higher mixing ratio at upper level essentially dominated and sustained the convective dynamics in all the three events. It was also found that the latent heat flux (LHF) dominated coastal events (Mumbai and Chennai) with relatively much higher values compared to sensible heat flux (SHF) throughout the event life cycle. In the case of the Bangalore event, both LHF and SHF are comparable during the event life cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call