Abstract

Provision of flight safety during hypersonic flight is a challenging scientific and technical problem. Waverider concept is based on matching the wing leading edge of the shock formed off the vehicle forebody. A hypersonic vehicle spends the major part of its cruise flight in high temperature flow. Design and optimization of waverider at hypersonic speeds is a challenging problem because a large number of variants are required to be computed to achieve a larger lift-to-drag ratios. Numerical simulation of the flowfield around a hypersonic waverider is performed using a high-temperature air model and a hybrid architecture based on graphics processing units. The mathematical model and computational algorithm are verified and validated against CFD benchmark problems. The results obtained show flowfield around hypersonic waverider and its aerodynamic quality at different angles of attack. The scalability of the developed model is investigated, and the results of the study of the efficiency of calculating hypersonic fluidflows on graphics processors are presented. The computational times achieved with the perfect and real gas models are compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call