Abstract

We have studied the intense electron beams emitted from multiple metallic, vertical and well-aligned Carbon Nanotube (CNT) field emitters. A two-dimensional (2D) particle-in-cell simulation code MAGIC2D is used to obtain the I–V characteristics near to the apex of the emitters' surface for a given applied electric field and field enhancement factor over a wide range of parameters. The effects of electron space charge and electric field shielding from neighboring emitters are compared in low current and high current regimes. It is found that the electron space charge is dominant in high current regime, where the Fowler–Nordheim (FN) law becomes the 2D Child–Langmuir (CL) law. The emitter spacing, number of emitters, and emitter's uniformity are also particularly studied, and they are more critical in low current regime. Smooth transition from the FN law to CL law is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call