Abstract

The current paper applied dissipative particle dynamics (DPD) approach to investigate heat transfer within nanofluids. The DPD approach was applied to study natural convection in a differential heated enclosure by considering the viscosity and the thermal conductivity of the nanofluid to be dual function of temperature and volume fraction of nanoparticles. Experimental data for viscosity and thermal conductivity are incorporated in the current DPD model to mimic energy transport within nanofluids. This incorporation is done through the modification of the dissipative weighting function that appears in the dissipative force vector and the dissipative heat flux. For the entire range of Rayleigh number considered in this study, it was found that the DPD results show a deterioration in heat transfer in the enclosure due to the presence of nanoparticles for φ>4%. However, some slight enhancement is shown to take place for small volume fraction of nanoparticles, φ≤4%. The DPD results experienced some degree of compressibility at high values of Rayleigh number Ra ≥105.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.