Abstract
A new scheme for the simulation of heat-assisted magnetic recording (HAMR) that systematically includes fluctuating material properties above a predefined length scale, while retaining magnetostatic interactions, is introduced. Renormalized media parameters Ms, Ku, Aex, and αdamp, suitable for useful length scales, are found numerically. These renormalized parameters are then used to model the Voronoi-cell-composed medium in the HAMR simulation. Transition jitters are obtained under various conditions. The results show that moderate maximum temperature of the heat spot, intergranular exchange coupling, media thickness of at least 10 nm, nonzero canting angle of the head field, relatively low head velocity, and large head-field strength are helpful for a successful recording.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.