Abstract

The focusing of hard x-rays was numerically simulated using a beam propagation method implemented in the BeamPROP software package and a Rayleigh-Sommerfeld integral. It was shown that when focusing hard X-rays of wavelength 1.34 A with sequentially arranged circular cylindrical microlenses (shaped as 10-µm micro-holes) found in a polycrystalline diamond film, a nearly 10 times shorter focal length of the microlens array can be achieved, reducing from 14.4 cm to 15 mm, via increasing the number of microlenses from 1 to 20. Meanwhile, the x-ray focal spot size was found to decrease 7 times along the minor axis from 1.5 μm to 200 nm, while the maximum intensity in the focus experienced a 40-times increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.