Abstract

The growth of nonspherical silica nanoparticles in a premixed flat flame has been simulated, including the effects of convection, diffusion, thermophoresis, chemical reactions, coagulation, and coalescence. Considering both radiation effect and multistep chemical reactions of methane/air including both oxidation and hydrolysis of SiCl 4 , combustion analysis in a premixed flat flame was done first to obtain temperature, concentration of gas species, and flow fields. The predicted flame temperatures were in good agreement with the previous experimental data. Two-dimensional aerosol dynamics in which both particle volume and surface area are independent variables was then analyzed to investigate the growth of nonspherical silica particles. Several different models of coalescence of silica particles were studied: viscous flow sintering, atomistic diffusion sintering, fast sintering, and hybrid sintering models. Since the residence time was short and temperatures were not high enough for perfect coalescence of silica particles in the present study, the resulting particles were partially sintered or open-structured aggregates. The variations of total volume/number concentration and diameter of average volume along the flame height were obtained and compared with experimental data. Bi-modal size distributions were obtained at some flame heights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.