Abstract

To estimate the parameters of ground motion in future strong earthquakes, characteristics of radiation and propagation of seismic waves in the Kamchatka region were studied. Regional parameters of radiation and propagation of seismic waves were estimated by comparing simulations of earthquake records with data recorded by stations of the Kamchatka Strong Motion Network. Acceleration time histories of strong earthquakes (Mw = 6.8–7.5, depths 45–55 km) that occurred near the eastern coast of Kamchatka in 1992–1993 were simulated at rock and soil stations located at epicentral distances of 67–195 km. In these calculations, the source spectra and the estimates of frequency-dependent attenuation and geometrical spreading obtained earlier for Kamchatka were used. The local seismic-wave amplification was estimated based on shallow geophysical site investigations and deep crustal seismic explorations, and parameters defining the shapes of the waveforms, the duration, etc. were selected, showing the best-fit to the observations. The estimated parameters of radiation and propagation of seismic waves describe all the studied earthquakes well. Based on the waveforms of the acceleration time histories, models of slip distribution over the fault planes were constructed for the studied earthquakes. Station PET can be considered as a reference rock station having the minimum site effects. The intensity of ground motion at the other studied stations was higher than at PET due to the soil response or other effects, primarily topographic ones. At soil stations INS, AER, and DCH the parameters of soil profiles (homogeneous pyroclastic deposits) were estimated, and nonlinear models of their behavior in the strong motion were constructed. The obtained parameters of radiation and propagation of seismic waves and models of soil behavior can be used for forecasting ground motion in future strong earthquakes in Kamchatka.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.