Abstract

We propose a gate-all-around tunnel field effect transistor (GAA TFET) having a n-doped layer at the source junction and investigate its electrical characteristics with device simulation. By introducing the n-doped layer, band-to-band tunneling area is increased and tunneling barrier width is decreased. Also, electric field induced by gate bias is increased by the surrounding gate structure, which makes it possible to obtain a more abrupt band-bending. These effects bring about a significant improvement in on-current and subthreshold characteristics. GAA TFET with n-doped layer shows subthreshold swing at Id =1nA/µm of 32.5mV/dec, average subthreshold swing of 20.6mV/dec. With comparison to other TFET structures, the merits of the proposed device are demonstrated and performance dependences on device parameters are characterized by extensive simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.