Abstract

Supercritical CO2 (S-CO2) power cycle has become one of the most efficient and low-pollution cycle schemes to improve thermal power generation efficiency and reduce energy consumption around the world. In this study, the 3D physical model of a 1000 MW S-CO2 circulating fluidized bed (CFB) boiler with annular furnace is established to simulate the gas-solid combustion process based on the MP-PIC method under the Eulerian-Lagrangian framework. By comparing with the conventional water steam CFB boiler, the S-CO2 CFB boiler has a smooth and stable gas-solid flow pattern with good uniformity of the particle concentration and velocity distribution, indicating that the annular structure and the layout of the heating surfaces is conducive to the gas-solid flow uniformity. The gas-solid phase temperature distributes uniformly basically without sudden rise or sudden drop, and the temperature difference between the solid phase and the gas phase is not large, which reflects the good combustion uniformity of the S-CO2 CFB boiler. Compared with 300 MW and 600 MW S-CO2 CFB boilers, the 1000 MW one shows a higher carbon conversion rate, lower desulphurization effect, and lower nitrogen removal performance with the CO, NO, and SO2 outlet concentration of 0.002%, 5.8 mg/m3, and 125 mg/m3, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call