Abstract

Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed, which can overcome the deficiency of single production method. Based on the combination production method, the physical and mathematical models are developed to simulate the hydrate dissociation. The mathematical model can be used to analyze the effects of the flow of multiphase fluid, the kinetic process of hydrate dissociation, the endothermic process of hydrate dissociation, ice-water phase equilibrium, the convection and conduction on the hydrate dissociation and gas and water production. The mechanism of gas production by the combination of warm water flooding and depressurization is revealed by the numerical simulation. The evolutions of such physical variables as pressure, temperature, saturations and gas and water rates are analyzed. Numerical results show that under certain conditions the combination method has the advantage of longer stable period of high gas rate than the single producing method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.