Abstract

Two-dimensional IR correlation spectroscopy (2D-COS) is a relatively novel method that provides the analysis of infrared spectra with the capacity to differentiate overlapping peaks and to distinguish between in-phase and out-of-phase spectral responses. The technique is becoming popular for protein dynamic studies, like H/D exchange attenuated total reflectance Fourier transform-infrared (ATR-FT-IR) spectroscopy. The use of this technique provides the capability to resolve the dynamic molecular events that occur upon H → D exchange of accessible amide protons and exchangeable protons within side chain (Arg, Tyr) that are commonly overlapped. The value of the use of simulated spectra to generate the 2D-COS plots is that it allows for confirmation of the existence of the auto-peaks and its correlations. Because of this, we have employed the use of simulated spectra originated from backbone vibrational contributions such as amide I, I′, II and II′ bands for a case study presented herein. Intensity, bandwidth, and band position were the parameters used to study their variation in the correlation plots during a typical H/D exchange ATR-FT-IR experiment. These simulations are compared with experimental spectral data from ATR-FT-IR analysis in order to separate the backbone contribution from the highly overlapped side chain contributions (mainly Arg and Tyr).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.