Abstract

Understanding the fracture properties of concrete, such as crack propagation behavior and fracture energy, is crucial for designing and evaluating concrete structures. Experimental results are insufficient and cannot be directly employed for a comprehensive analysis of the fracture behavior of concrete structures under load, particularly when considering concrete as viscoelastic with the presence of cracks. Recognizing the time and cost constraints of traditional experimental testing, this research leverages numerical simulations as a cost-effective alternative to determine viscoelastic material parameters. Thus, the critical evaluation of concrete fracture properties, fundamental for the design and assessment of concrete structures, is addressed. Employing a finite element method for four-point bending tests, the study systematically investigates parameters such as initial crack depth, displacement acceleration, and time step. The material properties of concrete are described using viscoelastic models. The findings provide valuable insights into crack propagation behavior and deformation characteristics, emphasizing the significant influence of the modulus of elasticity on both maximum load values and displacement. These findings contribute to a deeper understanding of the structure's response and underscore the importance of considering these parameters in similar simulations. The study highlights the importance of considering these parameters in simulations to enhance the understanding of concrete fracture behavior. The paper's contributions can extend to optimizing concrete mixtures, formulating repair strategies, and improving structural assessments. Further research is suggested to improve the accuracy of simulations and investigate material properties under various conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call