Abstract

A microcomputer model for forest carbon dynamics with five functional comparments (atmosphere, foliage, woody-parts, roots and dead biomass in the soil) is constructed which incorporates dry-matter production processes of trees such as photosynthesis, respiration and allocation of photosynthate. The effect of photosynthesis rate at saturated light and dark respiration rate of a single leaf upon surplus production (P s) is three-dimensionally illustrated as a function of cumulative leaf area index (LAI) and extinction coefficient of light. Probable values of the physiological parameters in this model are determined by repeated simulation experiments. The successional pattern during a period of 100 years is simulated, demonstrating stable and perpetual occurrence of a tropical rainforest ecosystem composed of three strata. The model is also analyzed in terms of response of relative initial density of trees, thereby displaying the law of constant final yield in a forest ecosystem. The model outputs of carbon fluxes and phytomasses at the steady state agree quite well with field data already obtained from a tropical rainforest at Pasoh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.