Abstract

Abstract Digesting scheelite by using H2SO4–H3PO4 is an environment-friendly and low-cost technology. The key approach to achieving efficient scheelite decomposition involves providing a good environment with uniform material composition for the growth of calcium sulfate. Therefore, numerical simulation of gypsum particle suspensions in a square stirred tank with a frame-type agitator for leaching scheelite was investigated. Simulated optimized results showed that the homogeneity of a multiphase flow system increased with the speed of the agitator. Reducing off-bottom clearance eased the dispersion of gypsum into the liquid. Adding baffles increased turbulence intensity and axial velocity in the tank, which eased solid suspension. The suspension improved, together with increases in the torque and power requirements of the agitator when the speed changed and baffled were added. However, when the solid suspension improved, the stirring torque and power slightly decreased, under a different off-bottom clearance of the agitator. Meanwhile, with residence time distribution as an evaluation criterion, the experimental results verified that the flow characteristics of the solid particles improved after optimization. This study can provide a theoretical basis and guidance for the optimization of the design and enlargement test of the stirred tank for leaching scheelite with sulfuric–phosphorous mixed acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call