Abstract
High temporal resolution of fast-scan cyclic voltammetry (FSCV) is widely appreciated in fundamental and applied electrochemistry to quantitatively investigate rapid dynamics of electron transfer and neurotransmission using ultramicroelectrodes (UMEs). Faster potential scan, however, linearly increases the background current, which must be subtracted for quantitative FSCV. Herein, we numerically simulate fast-scan nanogap voltammetry (FSNV) for quantitative detection of diffusing redox species under quasi-steady states without the need of background subtraction while maintaining high temporal resolution of transient FSCV. These advantages of FSNV originate from the use of a parallel pair of cylindrical UMEs with nanometer-wide separation in contrast to FSCV with single UMEs. In FSNV, diffusional redox cycling across the nanogap is driven voltammetrically at the generator electrode and monitored amperometrically at the collector electrode without the transient background. We reveal that the cylindrical collector electrode can reach quasi-steady states ∼104 times faster than the generator electrode with identical sizes to allow for fast scan. Double-microcylinder and nanocylinder UMEs enable quasi-steady-state FSNV at hundreds volts per second as practiced for in-vivo FSCV and megavolts per second as achieved for ultra-FSCV, respectively. Rational design and simple fabrication of double-cylinder UMEs are proposed to broaden the application of nanogap voltammetry.
Highlights
High temporal resolution of fast-scan cyclic voltammetry (FSCV) is widely appreciated in fundamental and applied electrochemistry to quantitatively investigate rapid dynamics of electron transfer and neurotransmission using ultramicroelectrodes (UMEs)
We report on finite element simulation of fast-scan nanogap voltammetry (FSNV) to quantitatively detect diffusing redox species at high temporal resolution of FSCV without the need of background subtraction
We adapt a previous model of chronoamperometry (18) for FSNV to reveal that local redox cycling between nanogap sides of double-cylinder electrodes quickly reaches quasi-steady states to allow for fast scan while a voltammetric response at the solution side of the generator electrode is still transient
Summary
High temporal resolution of fast-scan cyclic voltammetry (FSCV) is widely appreciated in fundamental and applied electrochemistry to quantitatively investigate rapid dynamics of electron transfer and neurotransmission using ultramicroelectrodes (UMEs). We adapt a previous model of chronoamperometry (18) for FSNV to reveal that local redox cycling between nanogap sides of double-cylinder electrodes (red and blue arrows in Figure 1A) quickly reaches quasi-steady states to allow for fast scan while a voltammetric response at the solution side of the generator electrode (black arrows) is still transient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.