Abstract

BackgroundAn accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina. These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. This interface consists of real dimensions and location of stimulation and ground electrodes that are separated by the retinal tissue and surrounded by physiological fluids.MethodsIn this study, we combined the prosthesis-retina interface elements into a framework to evaluate the geometrical factors affecting stimulation thresholds for epiretinal prostheses used in clinical human trials, as described by Balthasar et al. in their Investigative Ophthalmology and Visual Science (IOVS) paper published in 2008 using the Argus I epiretinal implants. Finite element method (FEM) based computations were used to estimate threshold currents based on a threshold criterion employing a passive electric model of the retina.ResultsThreshold currents and impedances were estimated for different electrode-retina distances. The profiles and the values for thresholds and impedances obtained from our simulation framework are within the range of measured values in the only elaborate published clinical trial until now using Argus I epiretinal implants. An estimation of resolution for the electrodes used in these trials was provided. Our results reiterate the importance of close proximity between electrodes and retina for safe and efficient retinal stimulation.ConclusionsThe validation of our simulation framework being relevant for epiretinal prosthesis research is derived from the good agreement of the computed trends and values of the current study with measurements demonstrated in existing clinical trials on humans (Argus I). The proposed simulation framework could be used to generate the relationship between threshold and impedance for any electrode geometry and consequently be an effective tool for design engineers, surgeons and electrophysiologists.

Highlights

  • An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices

  • The model demonstrates that biphasic stimulation thresholds for planar cells are lower than those of a spherical cell by a factor of 1.7-1.8 throughout all pulse durations. In spite of this factor, we considered a transcellular potential of 10 mV created across an retinal ganglion cell (RGC) soma of around 10 μm in diameter, a typical RGC size in primates used in modelling studies previously [33]

  • Resolution of the implant can be estimated for Estimation of resolution based on spatial extent of stimulation In our study, we have computed threshold currents for activation of a single RGC located at the cell activation depth from the stimulation electrode

Read more

Summary

Introduction

An accurate understanding of the electrical interaction between retinal prostheses and retinal tissue is important to design effective devices. Previous studies have used modelling approaches to simulate electric fields generated by epiretinal prostheses in saline and to simulate retinal ganglion cell (RGC) activation using passive or/and active biophysical models of the retina These models have limited scope for studying an implanted human retinal prosthesis as they often do not account for real geometry and composition of the prosthesis-retina interface. Electronic prosthetic devices [3] can be implanted to solve this issue, preliminary steps in constructing a complete framework for simulating epiretinal prosthesis have been developed in the present study to evaluate the factors affecting the activation thresholds of RGCs. The framework described here is similar to the one reported recently by us to study spatial extent of stimulation and effect of electrode-tissue gap in subretinal implants [12]. The development of an integrated simulation framework can predict the stimulation parameters by including these factors in the model

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.