Abstract

A case study is described in which the activated sludge process is replaced with a microalgae-activated sludge process. The effects on the heat and electricity consumption and carbon dioxide emissions were evaluated in a system model, based on mass and energy balances of biological treatment and sludge handling process steps. Data for use in the model was gathered from three wastewater treatment plants in Sweden. The evaluation showed that the introduction of microalgae could reduce electricity and heat consumption as well as CO2 emissions but would require large land areas. The study concludes that a 12-fold increase in the basin surface area would result in reductions of 26–35% in electricity consumption, 7–32% in heat consumption and 22–54% in carbon dioxide emissions. This process may be suitable for wastewater treatment plants in Nordic countries, where there is a higher organic load in summer than at other times of the year. During the summer period (May to August) electricity consumption was reduced by 50–68%, heat consumption was reduced by 13–63% and carbon dioxide emissions were reduced by 43–103%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call