Abstract

This study examines the role of boundary friction in promoting heterogeneous compaction in soft rock specimens loaded at high confining pressure outside the domain of compaction localisation. An elastoplastic constitutive model characterised by tunable hardening/softening behaviour is used to conduct the analyses. Finite-element simulations suggest that material instability is a non-necessary condition for the emergence of compaction fronts. Such fronts propagated as a result of a severe deviation in the local responses induced by frictional constraints. These findings suggest that boundary effects can bias the assessment of the extent of the compaction localisation domain. Experimental countermeasures and informed model calibration procedures are therefore necessary to minimise such bias and enable more accurate predictions of soft rock compaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call