Abstract

Electron beam interaction with thin films is a critical phenomenon in applications such as nanostructure fabrication, surface treatment and curing, surface sterilization, scanning electron microscopy, and electron beam lithography. Unlike bulk solids, thin films whose thickness is on the same order of magnitude as the penetration depth require consideration of interface effects: namely resistance to heat transfer and more electron scattering. In such cases, the energy deposition profile, the location of interfaces and the associated change in material properties must be accounted for. In this paper we describe the thermal simulation of a thin copper film (0.5 μm, 1 μm, 2μm) on a Si substrate irradiated by an electron beam (10 keV, 20 keV, 40 keV). We explore the effect of the interface position relative to the electron range and the local heating effects associated with continuous or long pulse beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.