Abstract

In this paper, a comprehensive model was developed to investigate the suspension spray for a radio frequency (RF) plasma torch coupled with an effervescent atomizer. Firstly, the RF plasma is simulated by solving the thermo-fluid transport equations with electromagnetic Maxwell equation. Secondly, primary atomization of the suspension is solved by a proposed one-dimensional breakup model and validated with the experimental data. Thirdly, the suspension droplets and discharged nanoparticles are modeled in Lagrangian manner, to calculate each particle tracking, acceleration, heating, melting and evaporation. Saffman lift force, Brownian force and non-continuum effect are considered for nanoparticle momentum transfer, as well as the effects of evaporation on heat transfer. This model predicts the nanoparticle trajectory, velocity, temperature and size in the RF suspension plasma spray. Effects of the torch and atomizer operating conditions on the particle characteristics are investigated. Such operating conditions include gas-to-liquid flow ratio, atomizer orifice diameter, injection pressure, power input level, plasmas gas flow rate, and powder material. The statistical distributions for the multiple particles are also discussed for different cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call