Abstract

The influence of bottom heat source on natural convective heat transfer characteristics in a two-dimensional square cavity fully filled with a homogeneous porous medium is numerically studied by the lattice Boltzmann method. In this physical model, the upper wall of porous cavity is set to be a cold heat source, and the bottom wall is designed as a local hot heat source. Both the left wall and the right wall are set to be adibatic. Specifically, the effects of both the position and size of bottom heat source on the properties of natural convective heat transfer are analyzed. The numerical results show that the position and size of bottom heat source have great influences on the characteristics of natural convective heat transfer, and there also exist the best position (a=4/16) and optimal size (b=0.75) of the bottom heat source for the maximal convective heat transfer intensity (Numax 10.35) and heat exchange capacity (Qmax 5.69).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.