Abstract
Twisted wires made of insulated strands, known as stranded conductors or litz wires, are used in various areas where the eddy current loss within the wire needs to be reduced. These areas include induction heating, resonance-based wireless energy transfer, and certain radio frequency devices. Some litz wires consist of thousands of individual conductor strands that are twisted together in multiple stages, creating a hierarchical bundle structure. Computer simulations (typically using finite element analysis) are used in the optimal design of the bundle structure. However, detailed three-dimensional models are computationally demanding. In this work, a two-dimensional finite element model was presented for simulating the eddy current loss in cables made of twisted wires. The key element of the model is considering the bundle structure (generally referred to as 3D configuration conditions) within the cross-sectional model domain. The accuracy of the proposed model is tested against 3D finite element simulations. The new method is shown to be accurate, and its computational cost is by orders of magnitude lower than that of 3D models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Periodica Polytechnica Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.