Abstract

Micromechanics-based models provide powerful tools to predict initiation of ductile fracture in steels. A new criterion is presented herein to study the process of ductile fracture when the effects of both stress triaxiality and shear stress on void growth and coalescence are considered. Finite-element analyses of two different kinds of steel, viz. ASTM A992 and AISI 1045, were carried out to monitor the history of stress and strain states and study the methodology for determining fracture initiation. Both the new model and void growth model (VGM) were calibrated for both kinds of steel and their accuracy for predicting fracture initiation evaluated. The results indicated that both models offer good accuracy for predicting fracture of A992 steel. However, use of the VGM leads to a significant deviation for 1045 steel, while the new model presents good performance for predicting fracture over a wide range of stress triaxiality while capturing the effect of shear stress on fracture initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call