Abstract

Super hydrophobic surfaces find uses in many applications; therefore proper design of super hydrophobic surfaces is very crucial. A lot of work has already been done for static droplets and super hydrophobic surface interactions. There have also been some significant experiments carried out for dynamic droplet impact on super hydrophobic surfaces. The present work focuses on the super hydrophobic surface under dynamic conditions, with the study predominantly carried out through numerical simulation. Various parameters during impact and time variance after impact (typically up to 10 μs) were considered. The transition from water hammer pressure (order of ρCV) to flow pressure (order of 1/2 ρV2) is taken as the main parameter of analysis. During water hammer pressure domain, a strong tendency to cause wetting (Wenzel state) is seen. During flow pressure domain, wetting tendency is significantly reduced (Cassie-Baxter state). These states and the transition from one to the other are very crucial to the desig...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.