Abstract

This paper represents the multiphysics simulation of droplet generation of ink containing conductive nano-particles through electrostatic forces on substrate. The main focus is to investigate the phenomena by generating the drops through a nozzle with the help of electrostatic forces. The electrostatic based deposition system has vast application in printed electronics and biotechnology. In electrostatic deposition mechanism for droplet generation, a strong electric potential is applied at the tip of the nozzle; due this electric potential, the liquid containing the nano-particles experience strong electrostatic static forces at the interface with the air (at the tip of the nozzle). When these electrostatic forces exceed the internal (viscous forces) and external forces (surface tension), a deformation takes place which results in the flow of the liquid in the form of droplets. The size of the droplet is dependent on different parameters like applied voltage, properties of the ink, dimension of the nozzle. To have better understanding of this, a numerical simulation was performed based on multi-physics approach. Multiple simulations were performed by changing the position of electrode in nozzle and varying the applied voltage. Droplet size with respect to applied voltage was evaluated; electric field with respect to applied voltage and time for the droplet generation was also evaluated through these simulations. This study will help in better understanding the parameters of droplet generation phenomena and optimal design of the nozzle for the electrostatic inkjet system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.