Abstract

In this paper, entropy generation of associated with double diffusive natural convection of non-Newtonian power-law fluids in an open cavity in the presence of a horizontal magnetic field, studying Soret and Dufour parameters has been analyzed by FDLBM (Finite Difference Lattice Boltzmann method). This study has been performed for the certain pertinent parameters of Rayleigh number (Ra = 104 and 105), Hartmann number (Ha = 0, 15, and 30), power-law index (n = 0.6, 1, and 1.4), Lewis number (Le = 2.5 and 5), Dufour parameter (Df = 0, 1, and 5), Soret parameter (Sr = 0, 1, and 5) and the buoyancy ratio (N = −1and 1). Results indicate that the augmentation of the thermal Rayleigh number enhances different entropy generations and declines the average Bejan number. The increase in the Hartmann number provokes various irreversibilities to enhance and the average Bejan number decreases significantly. The enhancement of Lewis number and buoyancy ratio affect various entropy generations and the average Bejan number. The rise of Soret and Dufour parameters enhances the entropy generations due to heat transfer and fluid friction. The change of power-law index alters various entropy generations, but the alteration does not follow a specific manner in different studied parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.