Abstract

A three-dimensional higher-order closure dispersion model is presented. The model is used to simulate dispersion from point sources in complex terrain. The model uses mean and turbulence quantities simulated with the fluid dynamic model presented in Part A to simulate dispersion in a polar coordinate system with its origin in the point source. Different turbulent length scales are used for the vertical and horizontal fluxes. Simulation results are compared with data from tracer experiments performed in southern Sweden, the Vänersborg-Trollhättan region. The tracer experiments were performed during convective atmospheric conditions as well as during very stable conditions. The geographical area has terrain features that exert forcing on the meso-γ-scale. Within the area there is a relatively flat agricultural area, forested hills, a river valley and an extended lake area. The terrain height relief is typically 80 m. The simulations with the dispersion model performed in the Vänersborg-Trollhättan region show good agreement with measured data in the region for convective atmospheric conditions as well as for very stable conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.