Abstract

The interaction of dislocations with low-angle grain boundaries (LAGBs) is considered one important contribution to the mechanical strength of metals. Although LAGBs have been frequently observed in metals, little is known about how they interact with free dislocations that mainly carry the plastic deformation. Using discrete dislocation dynamics simulations, we are able to quantify the resistance of a LAGB—idealized as three sets of dislocations that form a hexagonal dislocation network—against lattice dislocation penetration, and examine the associated dislocation processes. Our results reveal that such a coherent internal boundary can massively obstruct and even terminate dislocation transmission and thus make a substantial contribution to material strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.