Abstract

We have studied tunneling current in a p-n junction based on armchair graphene nanoribbon (AGNR) by using the relativistic Dirac equation and a transfer matrix method (TMM). The electron wave function was derived by solving the relativistic Dirac equation. The TMM, which is a numerical approach, was used to calculate electron transmittance and the tunneling current. The results showed that the tunneling current increases with the bias voltage. On the other hand, the tunneling current increases with the decreases in the electron incidence angle and temperature. Moreover, the increases in the AGNR width and electric field in the p-n junction result in the increase in the tunneling current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.