Abstract

Magnetic resonance diffusion imaging is an important tool for pathology research, and the cost of instrument development is extremely high. The construction of simulation models can optimize the parameters of key components of the instrument on the numerical platform, which can greatly reduce the R&D cost and improve the success rate. In this paper, a chain magnetic resonance simulation calculation method is obtained based on equation Bloch-Torrey to simulate the signal change law caused by gradient coding and diffusion characteristics, and MATLAB is used to construct a numerical imitation model and write a simulation program. Based on this calculation method, the diffusion-weighted imaging, diffusion coefficient imaging and diffusion tensor imaging simulation experiments were carried out by using the spin-echo (SE) diffusion-weighted sequence, and the images and results were reconstructed by combining the anti-Fourier transform. Experiments show that the simulated images can accurately reflect the set simulation model, reconstruct the diffusion coefficient and tensor characteristics, and the chain magnetic resonance simulation calculation method deduced in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call