Abstract

The spider VS-3 slit-sense organ contains two types of primary mechanoreceptor neurons that are morphologically similar but have different electrical behavior. Type A neurons fire only one or two action potentials in response to a mechanical or electrical step of any amplitude above the threshold, whereas type B neurons fire prolonged bursts of action potentials in response to similar stimuli. Voltage-clamp studies have shown that two voltage-activated ion currents, a noninactivating potassium current and an inactivating sodium current, dominate the firing behavior. We simulated the electrical behavior of the two neuron types, using a simplified form of Hodgkin-Huxley model based on published voltage-clamp and current-clamp recordings. Changing only two parameters of sodium inactivation, the slope of the h(infinity) curve and the time constant of recovery from inactivation, allowed a complete switch between the two firing patterns. Our simulations support previous evidence that sodium inactivation controls the firing properties of these neurons and indicate that two parameter changes are needed to achieve complete transformation between the two neuron types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.