Abstract

Molecular dynamics (MD) simulations are used to measure dynamical properties of a simple bead-spring model of A-B diblock copolymer molecules, and to characterize rates and mechanisms of several dynamical processes. Dynamical properties are analyzed within the context of a kinetic population model that allows for both stepwise insertion and expulsion of individual free molecules and occasional fission and fusion of micelles. Kinetic coefficients for stepwise processes and micelle fission have been extracted from MD simulations of individual micelles. Insertion of a free surfactant molecule into a preexisting micelle is shown to be a completely diffusion-controlled process for the model studied here. Estimates are given for rates of rare events that create and destroy entire micelles by competing mechanisms involving stepwise association and dissociation or fission and fusion. Both mechanisms are shown to be relevant over the range of parameters studied here, with association and dissociation dominating in systems with more soluble surfactants and fission and fusion dominating in systems with less soluble surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call