Abstract

An important component of the ocean’s thermohaline circulation is the sinking of dense water from continental shelves to abyssal depths. Such downslope flow is thought to be a consequence of bottom stress retarding the alongslope flow of density-driven plumes. In this paper the authors explore the potential for explicitly simulating this simple mechanism in z-coordinate models. A series of experiments are performed using a twin density-coordinate model simulation as a standard of comparison. The adiabatic nature of the experiments and the importance of bottom slope make it more likely that the density-coordinate model will faithfully reproduce the solution. The difficulty of maintaining the density signal as the plume descends the slope is found to be the main impediment to accurate simulation in the z-coordinate model. The results of process experiments suggest that the model solutions will converge when the z-coordinate model has sufficient vertical resolution to resolve the bottom viscous layer and horizontal grid spacing equal to its vertical grid spacing divided by the maximum slope. When this criterion is met it is shown that the z-coordinate model converges to an analytical solution for a simple two-dimensional flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.