Abstract

Abstract Three-dimensional dendritic growth of an Al-4 wt.% Cu alloy during solidification in the presence of forced flow was simulated by using a three-dimensional cellular automaton model. The three-dimensional Lattice–Boltzmann method was used in computing the flow dynamics. The effects of forced flow on the growth Péclet number, dendrite tip selection parameter, and secondary arm spacing were investigated. The simulated relationships of growth Péclet number and dendrite tip selection parameter with the forced flow are in good agreement with the Oseen–Ivantsov solution. The results indicate that with the increase in forced flow velocity, the secondary arm spacing first increases and then decreases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call