Abstract

The dynamics of positive and negative streamers is numerically simulated in atmospheric pressure air in the range of parameters corresponding to the streamer deceleration and termination in the middle of the discharge gap. A detailed comparison with experiments in air at constant and variable density demonstrates good agreement between the 2D simulation results and the observations. It is shown that positive and negative streamers behave in radically different ways when decelerating and stopping. When the head potential drops, the negative streamer transits to the mode in which the propagation is due to the forward electron drift. In this case, the radius of the ionization wave front increases, whereas the electric field at the streamer head decreases further and the streamer stops. Its head diameter continues to increase due to the slow drift of free electrons in the residual under-breakdown field. On the contrary, the only advancement mechanism for a positive streamer with a decreasing head potential is a decrease in the effective radius of the ionization wave, leading to a local increase in the electric field. This mechanism makes it possible to compensate for the reduction in the efficiency of gas photoionization at small head diameters. A qualitative 1D model is suggested to describe streamer deceleration and stopping for different discharge polarities. Estimates show that, during positive streamer stopping, the local electric field at the streamer head can exceed the threshold corresponding to the transition of electrons to the runaway mode when the head potential (relative to the surrounding space) decreases to ∼1.2 kV in atmospheric pressure air. In this case, pulsed generation of a beam of runaway electrons directed into the channel of a stopping positive streamer can occur. The energy of the formed pulsed electron beam depends on the intensity of photoionization in front of the streamer head. This energy can vary from 700 V (when increasing the photoionization rate by a factor of 10 with respect to the value in atmospheric pressure air) to 2.6 kV (when decreasing the photoionization rate by a factor of 1000). It is possible that this behavior of decelerating positive streamers can explain the observed bursts of x-ray radiation during the streamer propagation in long air gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.