Abstract

Dam failures usually cause huge economic and life losses , especially in urban areas where there is a high concentration of inhabitants and economic actors. In order to understand the physical mechanisms of the formation and development of dam-break flooding, lots of efforts have been put into different types of modelling techniques. However, most of existing models are 1D (one-dimensional) or 2D models based on the shallow water equations. In this paper, we present a 3D numerical modelling investigation of dam-break flow hydrodynamics in an open L-shape channel. A newly developed 3D unstructured mesh finite element model is used here. An absorption-like term is introduced to the Navier–Stokes equations in order to control the conditioning of the matrix equation in the numerical solution process and thus improve the stability. A wetting and drying algorithm is used here to allow the free surface height to be treated with a high level of implicitness and stability. The 3D model has been validated by comparing the results with the published experimental data. Good agreement has been achieved at six selected locations. This study shows that the 3D unstructured mesh model is capable of capturing the 3D hydraulic aspects and complicated local flows around structures in simulation of dam-break flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.