Abstract
As a light-weight structural material, magnesium alloys show good potential in improving the fuel efficiency of vehicles and reducing CO2 emissions. However, it is well known that polycrystalline Mg alloys develop pronounced crystallographic texture and plastic anisotropy during rolling, which leads to earing phenomenon during deep drawing of the rolled sheets. It is vital to predict this phenomenon accurately for application of magnesium sheet metals. In the present study, a crystal plasticity model for AZ31 magnesium alloy that incorporates both slip and twinning is established. Then the crystal plasticity model is implemented in the commercial finite element software ABAQUS/Explicit through secondary development interface (VUMAT). Finally, the stamping process of a cylindrical cup is simulated using the developed crystal plasticity finite element model, and the predicting method is verified by comparing with experimental results from both earing profile and deformation texture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.