Abstract

The effect of number of nuclei and growth rate on crystallization kinetics and detailed morphological development during isothermal crystallization of a polymer was investigated using a stochastic simulation. The results show that number of nuclei significantly affects both crystallization kinetics and polymer morphology. An increase in the number of nuclei hastens the crystallization process by speeding up the impingement phenomenon and increasing the levels of impingement. Growth rate has a stronger impact on crystallization kinetics, but it only helps speed up the impingement phenomenon without increasing the level of impingement. Although growth rate influences an average spherulite size and distribution of spherulite size during crystallization, it has no effect on final morphology. The quantitative understanding of morphological development obtained from this work will be a key element for constructing quantitative morphology-property relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call